DIASTEREOSELECTIVE SYNTHESIS OF 2,3,4-TRISUBSTITUTED Y-LACTOLS AND Y-LACTONES VIA REGIO- AND STEREOCONTROLLED OPENING OF A 1,2-EPOXY-4-HYDROXYALKYL CARBAMATE WITH HETERO-NUCLEOPHILES

Jörg Lüßmann^{a)}, Dieter Hoppe^{*a)}, Peter G. Jones^{b)}, Christa Fittschen^{b)} and George M. Sheldrick^D a) Institute of Organic Chemistry, University of Kiel, Olshausenstr. 40, D-2300 Kiel 1, FRG b) Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-3400 Göttingen

Summary: The acid-catalyzed ring opening of the title epoxide 1 takes place at the C-1 atom with retention of configuration at C-2 to form 2,3-cis-2-hydroxy-substituted γ -lactol derivatives **3.** In basic media, nucleophiles attack the C-2 atom with <u>inversion</u> of configuration yielding 2,3-<u>trans</u>-lactols **5.** Oxidation furnishes corresponding γ -lactones **6, 11** or **13.**

Diastereomerically pure 1,2-epoxy-4-hydroxyalkyl carbamates of type 1 are readily prepared from 2-alkenyl carbamates and aldehydes¹⁾, with formation of the C-3 - C-4 bond. Since both synthetic steps (titanium-mediated homoaldol reaction²⁾ and hydroxyl-directed epoxidation) proceed with essentially complete diastereoselectivities, no isomer separations are ne= cessary. The oxy-substituted oxirane ring in 1 constitutes an activated α -hydroxy carbonyl moiety. Among the few synthetic applications of 2-oxy-oxiranes³⁾, those providing informa= tion on the configurative course of their ring opening are very scarce^{3a,b,c)}. Therefore, with the epoxide⁴⁾ 1 as a representative example, we explored the reaction of the novel class of compounds with nucleophiles.

Under the influence of an acidic catalyst⁵⁾, reaction path A is expected to occur, be= ginning with a rapid attack of the 4-OH group at C-1 and with formation of an intermediate 2-hydroxy-lactol carbamate⁶⁾ 2. In the presence of equimolar amounts of acid, with loss of diisopropyl amine and carbon dioxide from 2, the nucleophile <u>Nu</u> should enter the 1-position to form 3 (presumable epimers at C-1). <u>Retention</u> of configuration at C-2 is the stereochemi= cal result. However, without catalyst, a strong nucleophile <u>Nu</u> is expected to attack the less electron deficient⁷⁾C-2 atom with <u>inversion</u> of configuration (path B). After elimina= tion of <u>N,N</u>-diisopropylcarbamate anion from the hemi-acetal 4, the lactol 5 should be the first isolable product.

When stirring 1 with 1.0 equiv. of methane sulfonic acid in excess methanol at -78° C, a single lactol ether **3a** was isolated with 83% yield. Its configuration was determined from the single crystal X-ray analysis⁸ of the <u>p</u>-chlorophenyl urethane⁹ **9b** (m.p. 105° C), Figure 1. Under the same conditions, but with 10 equiv. of acetic acid, the acetates **10** and **11** were ob= tained with 60% and 24% yield, respectively. From the NMR spectra of lactone **13**, obtained from **10**, and comparison with its 2-epimer **6a**, it is evident that no inversion at C-2 had occurred. Obviously, the primarily formed 1-acetate **3b** suffers from rapid trans-acetylations.

On heating 1 with 1.0 equiv. of sodium acetate, phenolate, azide, thiolates or <u>p</u>-toluene sulfinate, (dimethylformamide, 24h at 90° C, method A; or acetonitrile, 48h at 85° C, method B), the expected γ -lactols **5a-f**, epimeric at C-1, were obtained in good yields (Table 1). Oxidation of **5a-f** by the Sarett reagent¹⁰) (CrO₃·2 pyridine) afforded the γ -lactones **6a-f**. The lactols **5b,d-f** and also the corresponding γ -lactones **6** are accompanied by 5 - 8% of the 2-epimers **7** or **8**, presumably formed from the tautomeric 4-hydroxy-alkanals under basic con= ditions.

By the same method, lactol 10 gave lactone 13 (yield 85%). Lactol ether 9a was oxidized by the Grieco method¹¹⁾ (<u>m</u>-chloroperbenzoic acid/ borontrifluoride etherate) to yield the urethane-protected γ -lactone 12 (84%).

2,3-<u>trans</u>-lactones **6** are recognized in their ¹H NMR by the coupling constant $J_{2,3}$ = 10-10.5 Hz and in ¹³C NMR by the chemical shift of C-3 between δ = 37.7 - 40.1 ppm. The 2,3-<u>cis</u>isomers **12** or **13** exhibit $J_{2,3}$ = 8.0 Hz and δ (C-3) = 34.9 - 37.3 ppm, respectively¹².

We conclude that 1,2-epoxy-4-hydroxyalkyl carbamates offer a flexible and convenient strategy for the efficient, highly stereocontrolled synthesis of complex γ -lactones and related compounds. Further studies are in progress.

Table 1: Yields of γ -lactols and γ -lactones 5 and 7, or 6 and 8

(M)Nu	lactol	method	yield	lactone	yield	ratio 6 : 8
(K)0 ₂ CCH ₃	5a	А	71%	6a	84%	>98 : 2
(Na)OC ₆ H ₅	5b	В	64%	6b	84%	95 : 5
(Na)N ₃	5c	А	63%	6c	83%	> 98 : 2
(Na)SC ₆ H ₅	5d	В	89%	6d	81%	93 : 7
(K)SCH2C6H5	5e	В	92%	6 e	82%	92 : 8
(Na)SO ₂ p-Tol	5f	В	63%	6 f	82%	93 : 7

Fig. 1. The molecule of $\mathbf{9b}$ in the crystal⁸⁾

<u>Procedures: acid-catalyzed ring-opening</u> to 3a: To epoxide 1 (287 mg, 1.00 mmol) in dichlo= romethane (3 ml) and methanol (3.0 ml) at -78°C in nitrogen atmosphere, distilled methane= sulfonic acid (0.065 ml, 1.00 mmol) was added and stirring was continued for 15 h at -78°C. The reaction mixture was poured to ether/aqueous 2N HCl (14 + 4 ml), the ether solution washed with NaHCO₃-solution, dried over MgSO₄, evaporated, and the residue purified by liquid chromatography (silica gel, hexanes/ether 8 : 1); yield 144 mg (83%) **3a**.

<u>Nucleophilic ring-opening</u> to 5: 1 (2.00 mmol) and the salt of the nucleophile (M)Nu (2.0 mmoles) in dry dimethylformamide (10 ml) were stirred under nitrogen at 90°C for 24 h (method A) or were stirred at 85°C in dry acetonitrile for 48 h (method B, tlc control). Work-up was accomplished as described above.

Acknowledgements: Financial support of this work by the Deutsche Forschungsgemein= schaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Dedicated to Professor Rudolf Gompper on the occasion of his 60th birthday.

- D. Hoppe, J. Lüßmann, P. G. Jones, D. Schmidt, G. M. Sheldrick, <u>Tetrahedron Lett.</u> 26, preceding communication.
- Review: D. Hoppe, <u>Angew. Chem.</u> 96, 930 (1984); <u>Angew. Chem. Int. Ed. Engl.</u> 23, 932 (1984).
- a) Brigl anhydride, review: N. R. Williams, <u>Adv. Carbohydr. Chem.</u> 25, 163 (1970). b) K. L. Williamson, J. I. Coburn, M. F. Herr, <u>J. Org. Chem.</u> 32 3934 (1967), and ref. c) L. Duhamel, P. Duhamel, P. Siret, <u>Bull. Soc. Chim. Fr.</u> 1968, 2942, and ref. d) R. A. Amos,

J. A. Katzenellenbogen, J. Org. Chem. 42, 2537 (1977). e) J. Gasteiger, K. Kaufmann, <u>Tetrahedron Lett.</u> 26, 4341 (1985).

- 4) This paper deals with racemic compounds. Only one of the enantiomers is shown.
- Acid catalyzed ring opening of 3,4-epoxy-alkanols, review: Y. Kishi, <u>Aldrichim. Acta</u> 13, 23 (1980).
- 6) In some cases, from stored solutions of epoxides of type 1 unstable carbamates of type 2 could be isolated; D. Hoppe, G. Tarara, unpublished work.
- 7) Review: C. H. Behrens, K. B. Sharpless, Adrichimica Acta 16, 67 (1983).
- 8) Crystal data for **9b**: P_{2_1}/\underline{n} , $\underline{a} = 12.152(3)$, $\underline{b} = 9.322(2)$, $\underline{c} = 16.319(4)$ Å, $\underline{B} = 110.38(2)^{\circ}$, $\underline{Z} = 4$, $\underline{R} = 0.061$ for 1452 unique observed reflections (Mo \underline{K}_{α} , $2\theta_{max}$ 45°). Further crystallographic details can be obtained on request from the Fachinformations= zentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, FRG; please quote the full literature citation and the reference number CSD-51623.
- 9) 9a was obtained from 3a and p-chlorophenyl isocyanate (1.25 equiv.) with pyridine (0.15 equiv.) in refluxing dichloromethane (48 h, yield 92%, m.p. 105°C (from ether/ pentane).

¹H NMR (CDCl₃): $\delta = 0.95$ [d, $\underline{J} = 6.8$ Hz; CH(CH₃)₂], 1.05 (d, $\underline{J} = 7.1$ Hz, 3-CH₃); 1.80 [m, CH(CH₃)₂]; 2.27 (m, 3-H); 3.41 (s, OCH₃); 3.59 (dd, $\underline{J}_{4,3} = 6.1$ Hz, $\underline{J}_{4,4} = 12.1$ Hz, 4-H); 5.00 (dd, $\underline{J}_{2,1} = 4.3$ Hz, $\underline{J}_{2,3} = 8.9$ Hz, 2-H); 5.04 (d, $\underline{J}_{1,2} = 4.3$ Hz, 1-H) ppm. ¹³C NMR (CDCl₃): $\delta = 14.32$ (3-CH₃); 31.81, 17.84 and 18.28 [CH(CH₃)₂]; 35.52 (C-3); 54.79 (OCH₃); 75.24 (C-2); 89.11 (C-4); 102.21 (C-1); 120.07, 128.98 and 136.57 (Aryl); 153.07 (C=0) ppm.

- G. I. Poos, G. C. Arth, R. E. Beyler, L. H. Sarett, <u>J. Am. Chem. Soc.</u> 75, 422 (1953);
 E. J. Corey, G. Schmidt, <u>Tetrahedron Lett.</u> 1979, 399.
- 11) P. A. Grieco, T. Oguri, Y. Yokoyama, Tetrahedron Lett. 1978, 419.

12) **6a** and [**8a**] ¹H NMR (CDCl₃): $\delta = 1.94$ [1.89] (m); 1.07 [1.05] and 1.00 [1.02] [each d, CH(CH₃)₂]; 1.21 [1.05] (d, 3-CH₃); 2.17 [2.17] (s, 0₂CCH₃); 2.39 [2.68] (ddq, $\underline{J}_{3,3}$; = 7.0 [7.0] Hz, $\underline{J}_{3,4} = 9.5$ [7.0] Hz, $\underline{J}_{3,2} = 10.0$ [8.0] Hz, 3-H); 3.90 [3.93] (dd, $\underline{J}_{4,4}$; = 4.5 [3.5] Hz, 4-H); 5.25 [5.44] (d, 2-H). - ¹³C NMR (CDCl₃): $\delta = 15.08$ [13.24] (3-CH₃); 30.55 [31.76], 16.51 [17.73], and 18.98 [18.52] [CH(CH₃)₂]; 20.51 [20.28] and 169.64 [169.57] (CH₃CO₂); 39.24 [35.12] (C-3); 79.14 [70.24] (C-2); 87.15 [90.60] (C-4); 171.88 [172.31] (C-1). Selected ¹H and ¹³C NMR data in CDCl₃ (δ , ppm): **6b** [**8b**] : $\underline{J}_{2,3} = 10.0$ [7.5] Hz, $\underline{J}_{3,4} =$ 9.5 [6.5] Hz; 80.91 [75.52] (C-2); 40.13 [36.60] (C-3). - **6c**: $\underline{J}_{2,3} = 10.5$, $\underline{J}_{3,4} =$

9.5 Hz; 64.12 (C-2); 39.44 (C-3). - 6d [8d]: $\underline{J}_{2,3} = 10.0$ [7.5] Hz, $\underline{J}_{3,4} = 9.5$ [6.5] Hz; 54.37 [51.58] (C-2); 38.80 [37.28] (C-3). - 6e [8e]: $\underline{J}_{2,3} = 10.0$ [7.5] Hz, $\underline{J}_{3,4} = 9.5$ [6.5] Hz; 48.00 [45.22] (C-2); 39.82 [37.00] (C-3). - 6f [8f]: $\underline{J}_{2,3} = 10.0$ [7.5] Hz, $\underline{J}_{3,4} = 9.5$ [6.5] Hz; 48.00 [45.22] (C-2); 39.82 [37.00] (C-3). - 6f [8f]: $\underline{J}_{2,3} = 10.0$ [7.5] Hz, $\underline{J}_{3,4} = 9.5$ [6.5] Hz; 74.91 [70.76] (C-2); 37.73 [34.91] (C-3).

(Received in Germany 29 April 1986)